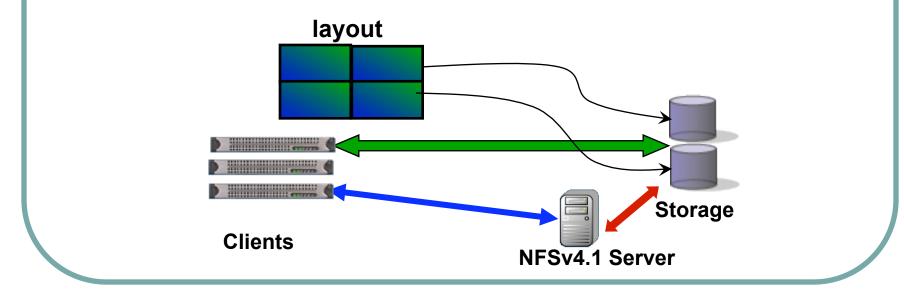
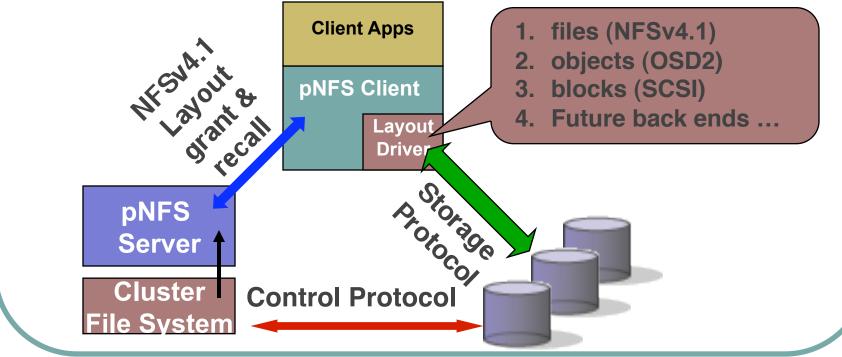

pNFS BOF SC08 2008-11-19

- Spencer Shepler, StorSpeed
- Bruce Fields, CITI (University of Michigan)
- Sorin Faibish, EMC
- Roger Haskin, IBM
- Ken Gibson, LSI
- Joshua Konkle, NetApp
- Brent Welch, Panasas
- Bill Baker, SUN Microsystems

Outline


- What is pNFS?
- pNFS Timeline
- Standards Status
- Industry Support
- Linux Status
- Vendor Presentations
 - EMC, IBM, LSI, NetApp, Panasas

What is pNFS?


pNFS Layouts

- Client gets a *layout* from the NFSv4.1 server
- The layout maps the file onto storage devices and addresses
- The client uses the layout to perform direct I/O to storage
- At any time the server can recall the layout
- Client commits changes and returns the layout when it's done
- pNFS is optional, the client can always use regular NFSv4.1 I/O

Linux pNFS Client

- Transparent to applications
- Common client for different storage back ends
- Fewer support issues for storage vendors
- Normalizes access to clustered file systems

Timeline

- 2004 CMU, NetApp and Panasas draft pNFS problem and requirement statements
- 2005 CITI, EMC, NetApp and Panasas draft <u>pNFS extensions to NFS</u>
- 2005 <u>NetApp and Sun demonstrate pNFS at</u> <u>Connectathon</u>
- 2005 pNFS added to NFSv4.1 draft
- 2006 2008 specification baked
 - Bake-a-thons, Connectathons
 - 26 iterations of NFSv4.1/pNFS spec
- 2008 NFSv4.1/pNFS reaches IETF Last Call

pNFS Standards Status

NFSv4.1/pNFS are being standardized at IETF

• NFSv4 working group (WG)

In the end game:

- WG last call (DONE)
- Area Director review (DONE)
- IETF last call (November, 2008)
- IANA review (TBD)
- IESG approval for publication (Expected December, 2008)
- RFC publication (Expected early 2009)

Will consist of several documents:

- NFSv4.1/pNFS/file layout
- NFSv4.1 protocol description for IDL (rpcgen) compiler
- <u>blocks</u> layout
- objects layout
- <u>netid specification</u> for transport protocol independence (IPv4, IPv6, RDMA)

Industry Contributors to pNFS Standard

- BlueArc
 NetApp
- CMU
- EMC
- IBM

LSI

Seagate

Panasas

- StorSpeed
- Sun Microsystems

Ohio SuperComputer Ctr

Industry Support - Implementations

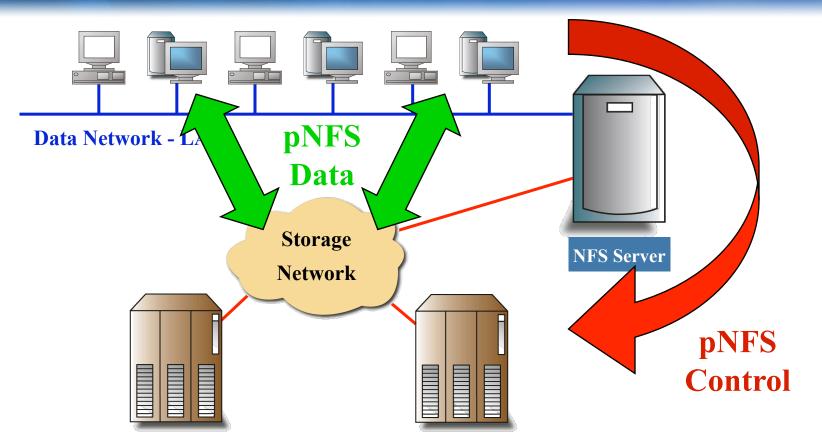
- Clients
 - Linux
 - Sun (Solaris)

- Servers
 - Desy
 - EMC
 - IBM
 - Linux
 - NetApp
 - Panasas
 - Sun (Solaris)

Several other implementations have been tested at Bake-a-thons and Connectathons

Linux Status

- Client
 - Consists of generic pNFS client and "plug ins" for "layout drivers"
 - Supports files, blocks, objects
 - Contributors: CITI, EMC, NetApp, Panasas
- Server
 - Supports files, blocks, objects
 - Contributors: CITI, EMC, IBM, NetApp, Panasas
- Finalizing patches for kernel.org NFSv4.1 sessions
- Predicted timeline:
 - Basic NFSv4.1 features 1H2009
 - NFSv4.1 pNFS and layout drivers by 2H2009
 - Linux distributions shipping supported pNFS in 2010.



EMC and pNFS SC08

Sorin Faibish – EMC DE David L. Black – EMC DE Per Brashers – EMC MPFS Architect

Parallel NFS - pNFS

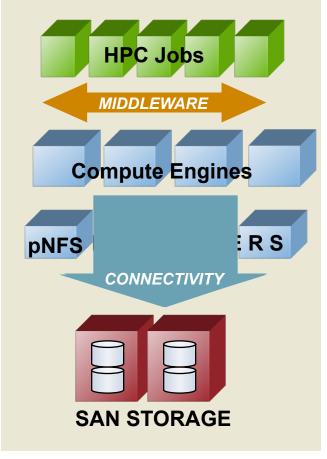
- NFS file naming, management, and administration
- Parallel high bandwidth file access (via Storage Network)
- Block Layout leverages existent SAN infrastructures

- The ancestors of pNFS Block Layout are NAS accelerators - 1998:
 - EMC-MPFS, Quantum-StoreNext and Mercury-Sanergy
- EMC donate the FMP (MPFS) protocol and IP
 - Open source version of FMP client (iRoad) 2003
 - IETF pNFS Block Layout = modified open storage FMP protocol 2004
- EMC support pNFS Block Layout in Linux kernel by join work with CITI: Peter Honeyman, Fred Isaman, Bruce Fields
 - Current pNFS block layout open source client and NFSv4.1 demonstrated at bake-a-thons
 - Ongoing funding the project, in 4th year = strong EMC commitment
 - Customers can experience the value of pNFS using the EMC FMP open source driver, or by installing current shipping MPFS product.

pNFS Block Layout – Now

- pNFS will supports any SAN storage (LSI, EMC, other SAN)
 - Working with other SAN vendors to promote pNFS Block Layout
- EMC plans to support NFSv4.1 and pNFS server only after RFC approval and pNFS clients in Linux kernel
 - Prototype demonstrated at latest Bake-a-thon
 - Demo on Laptop with VM and real clients
- EMC is working with all the pNFS developers to accelerate adoption by HPC
 - The goal is to combine all flavors of pNFS servers accessed by each Linux client in one single infrastructure
 - Working with Linux Distributions and Linux kernel developers
- What value brings pNFS block layout
 - Leverage existent SAN storage and connectivity
 - Allow access to SAN storage by NFSv4 network clients
- Virtualizes multi-vendor storage arrays into a single unified view © Copyright 2008 EMC Corporation. All rights reserved.

pNFS Block Layout deliver high I/O speeds to HPC



pNFS addresses storage access issues

- Remove servers layer between CE and shared storage
- Separates MD traffic from Data Traffic
- Asymmetric storage architectures increase scalability
- Leverages SSD to increase I/O speed
 - Automatic tiering
- Improves utilization to any SAN infrastructure:
 - FCoE, Infiniband, FC, iSCSI
- Enable access to PB's of storage at GB's/ sec speeds
 - Demonstrated by existent MPFS deployments
- Combine multiple MD servers in a unified storage system
- MD server is any Celerra NAS server supporting:
 - NFSv3, CIFS, MPFS and pNFS
 - Tiered services for increased scalability

Storage must be Networked

HPC Architecture

EINT 2 where information lives®

GPFS and pNFS

Roger Haskin Senior Manager, File Systems IBM Almaden Research Center

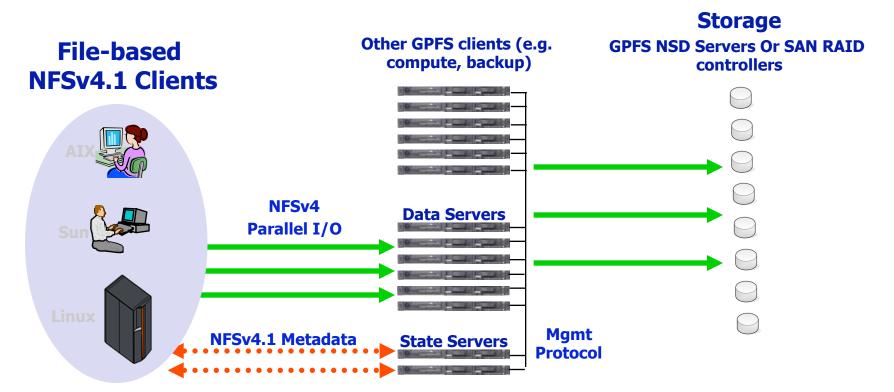
	-
TELL	T.
- 프_프_ 프	5

GPFS and pNFS

Why are we interested in pNFS?

To augment GPFS, not by any means to replace it!

- Parallel import/export of data into/out of GPFS
- Parallel access to GPFS from unsupported platforms
- Makes GPFS native file system features available to open clients
 - GPFS ILM (storage pools and data migration policies)
 - HPSS, TSM, and other HSM solutions built on GPFS
- To enable GPFS-based pNFS servers


What are we doing? Linux pNFS server on GPFS

- Participating in IETF standardization efforts
- Funding Linux pNFS work at University of Michigan (CITI)
- Defining open interface API's between pNFS server and generic cluster file system
 Fully open-source reference implementation on Red Hat GFS2
- Contributing to the implementation of Linux pNFS
 - Client and server common code, file layout driver
 - Basic I/O path (< 1 month of effort)
 - Now supports most pNFS operations
 - CITI now doing performance testing

The goal: A High-quality Linux pNFS server on GPFS

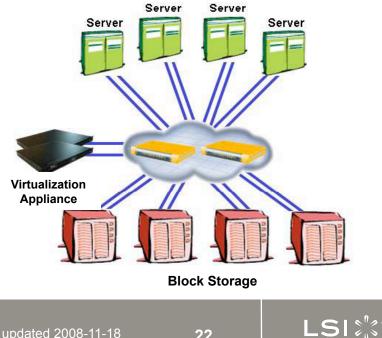
pNFS with GPFS

- Fully-symmetric GPFS architecture scalable data and metadata
 - pNFS client can mount and retrieve layout from any GPFS node
 - metadata requests can be load balanced across cluster
- PNFS server and native GPFS clients can share the same file system
 - Backup, deduplication, and other management functions don't need to be done over NFS
 - pNFS server can be integrated into the compute cluster

		22	
	R S	3.0	¥. [
3,8	.23		- 2

LSI and Block pNFS

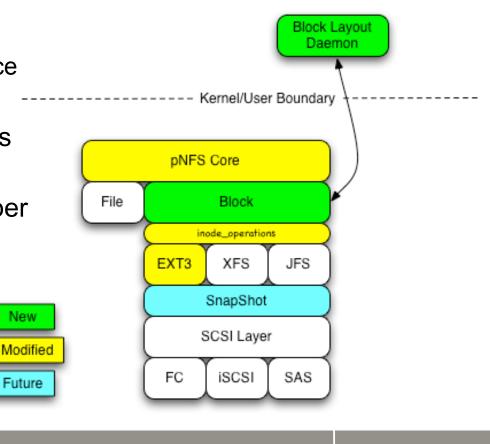
Ken Gibson Engenio Storage Group


Ken.Gibson@lsi.com

<image>

pNFS SC08 BOF updated 2008-11-18

Why Block pNFS?


- Lots of networked block storage in the world
- There will always be a block layer
- Common need to aggregate and virtualize block storage
- LSI and others provide non-standard block virtualization today
- Benefits of standards
- Need for Block, Object and File storage to co-exist in real-world datacenters Server Server

22

LSI pNFS Block Layout Prototype

- Added XDR routines for GETDEVINFO and LAYOUTGET
- New daemon used to gather information for GETDEVINFO
- Breaks apart LVM volumes
- Finds partition offsets
- Locates EFI signature on each device
- Investigating kernel APIs
- Investigating proposed kernel APIs
- Testing against UM client
- Tested at Bake-a-thon in September

23

LSI 2.3

Next Steps

- Validate layout driver and pursue integration in kernel
- Understand failure handling
 - Failed nodes
 - Fencing...
- Explore enhanced data services
 - Snapshots
 - Replication
- Understand co-existence with File and Object MetaData servers

LSI

Go further, faster™

NetApp and pNFS SC08

Joshua Konkle Mike Eisler

NetApp – Commitment to pNFS

- Data ONTAP GX / Striped WAFL
 - Experience that influenced pNFS specification
- Co-operation with partners and competitors
 - Many NetApp engineers dedicated to standards
 - co-chair, two co-editors, several co-authors
 - Co-developing Linux pNFS client and server with NFS community
 - Co-sponsored Connectathon 2008
 - Brought Linux client and server and Data ONTAP server to Connectathons and Bake-a-Thons

NetApp – Current Status/Adoption

- pNFS server prototype for Data ONTAP
- Leverages existing Data ONTAP GX
 - Storage clustering
 - Striped WAFL
- Striped WAFL addresses pNFS problem statement
 - Data Protection
 - Snapshots, Mirroring, Backup and Recovery
 - Multiprotocol Data Sharing
 - NFSv3, CIFS, pNFS (NFSv4)
- File layouts
 - No need deploy new fabrics
 - It's just NFS over TCP/IP over Ethernet

Data ONTAP, Striped WAFL and pNFS

- Every storage node capable of being a metadata server and/or data server
 - pNFS layouts can come from any node

Striped WAFL volumes span any/all nodes

- As a single file system
- Provides multi-GByte/sec throughput
- Scales to thousands of TB capacity
- Online expansion across add-on nodes
- Management simplicity preserved

NetApp - Summary

- Investing in pNFS eco-system with our partners and competitors
 - standards
 - open source
- NetApp supports scale-out caching today
 - SSD announced; PAM for improved read I/O
- Support pNFS file layout in Data ONTAP prototype
- Unified Storage Architecture product
 - Enterprise NAS & SAN with HPC requirements

Go further, faster™

Accelerating Industry-wide Adoption of Parallel Storage Solutions

"The Leader in Parallel Storage"

www.panasas.com

pbhfsdeftta BOF updated 2008-11-18Confidential

panasas 🔎

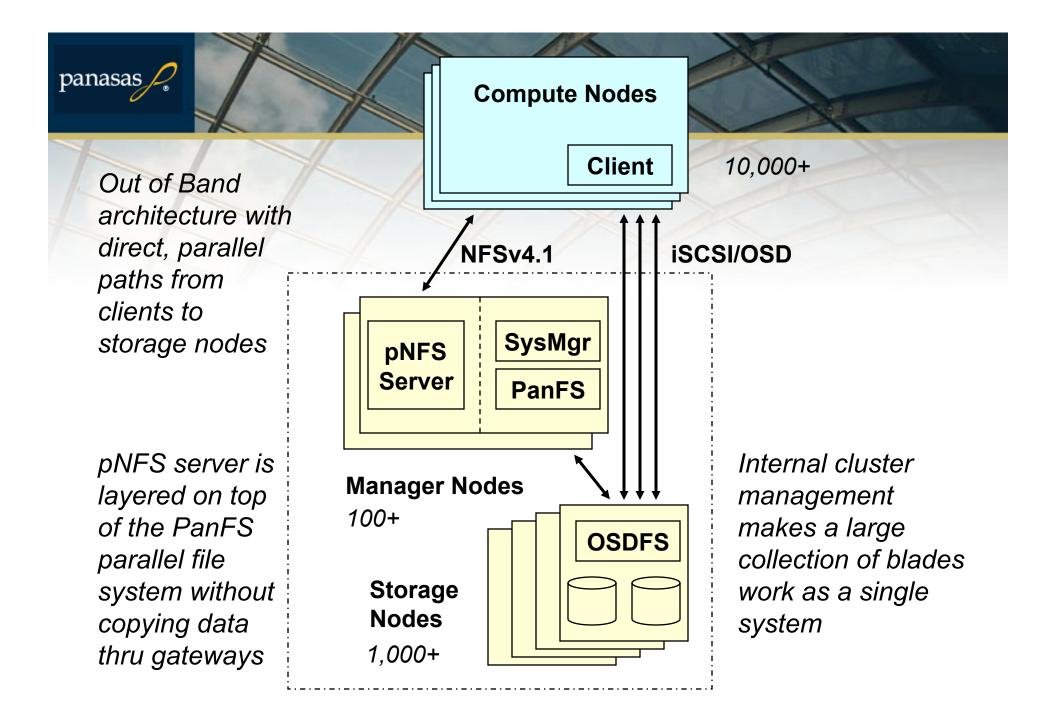
Impetus for a Parallel I/O Standard

Parallel storage vendors have existing, incompatible parallel products

- Panasas PanFS
- IBM GPFS
- EMC MPFSi (High Road)
- IBRIX Fusion
- What about open source?
 - Red Hat GFS
 - PVFS
 - Lustre
 - Same compatibility problem combined with robustness concerns

Standards drive adoption, unlock markets and lower costs

panasas 🎝

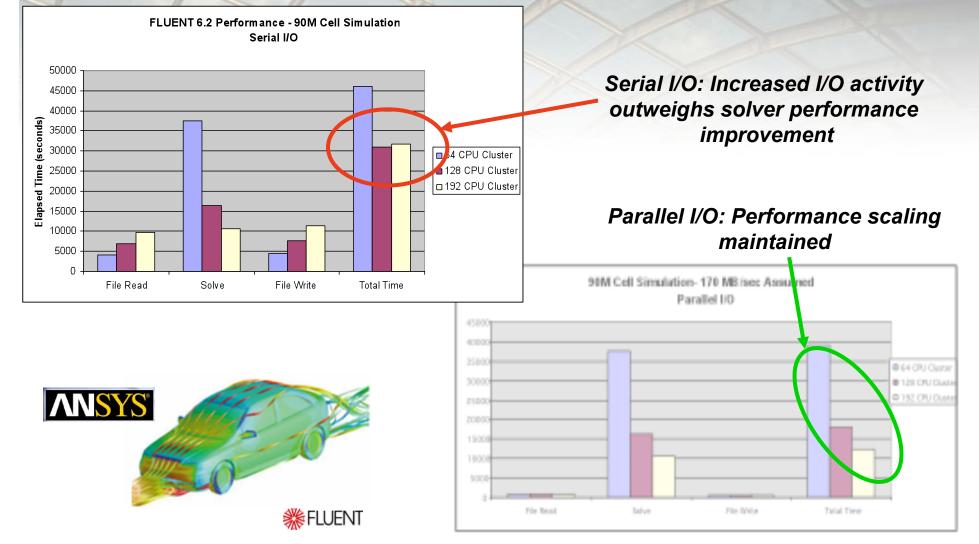

Panasas and pNFS

- Co-Led the kick-off workshop in November 2003 that drew representatives from all leading vendors of cluster file systems
 - Thank you Peter Honeyman/CITI for hosting and all their subsequent support for pNFS
- Co-Published initial internet drafts on pNFS
 - Thank you to the nfsv4 working group for being so receptive
- Contributed to Linux open source for iSCSI/OSD
 - Experienced in Linux open source culture for code adoption
- Leading/Coordinating Linux development for pNFS
 - Ushering patches upstream is a full time job
- Panasas storage cluster is pNFS compatible today

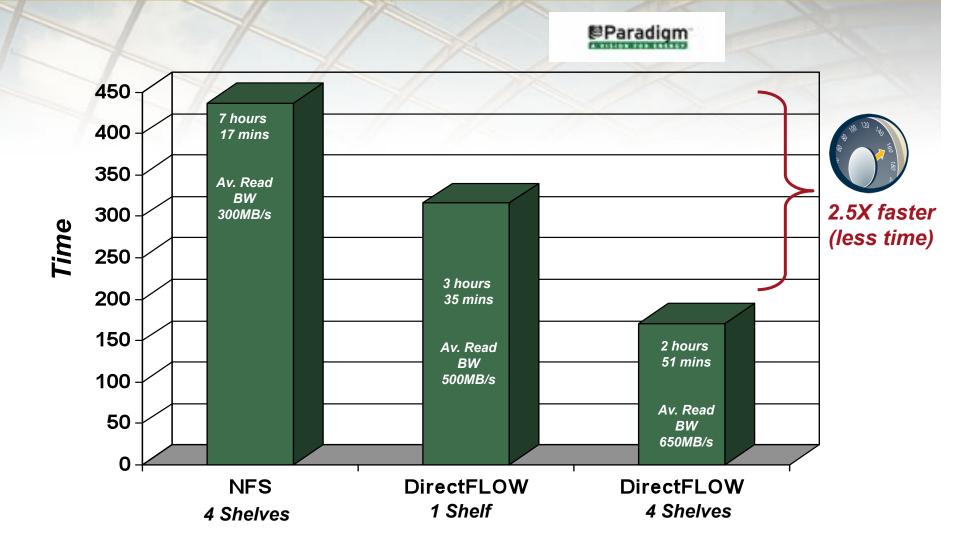
panasas 🔎

Motivation for Object pNFS

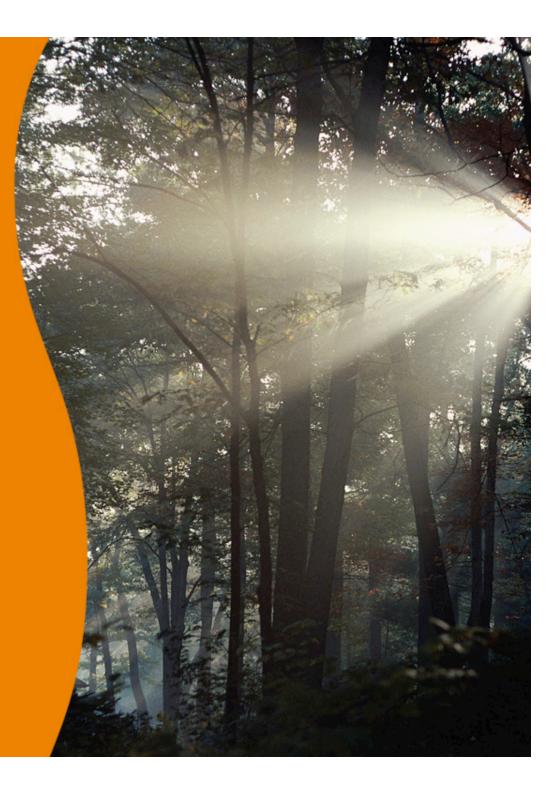
- An Object is like an inode: data + extensible attributes
- Objects have a fine-grained security policy mechanism
 - Metadata servers determine security policy (i.e., file access control decisions)
 - OSD enforce those security policies, all using a strong protocol
 - Support for fencing objects, and fencing clients
 - Supports efficient server-side protocols to set up and enforce access control
- OSD is the latest standard SCSI command set
 - OSDv1 ratified in January 2005, OSDv2 thru letter ballot, being ratified "soon"
 - Designed to be appropriate for implementation on a storage controller
- OSD is the "ideal" building block for clustered storage
- And, of course, Panasas storage clusters use OSD


Prototype pNFS approaching today's DirectFLOW Performance

pNFS iozone Throughput


The Advantage of Parallel Storage over NFS: FLUENT CFD Analysis

Source: Fluent / ANSYS, November 2006


The Advantage of Parallel Storage over Clustered NFS: Paradigm GeoDepth Seismic Benchmark

Source: Paradigm & Panasas, February 2007

pNFS Bill Baker Senior Staff Engineer Sun Microsystems

Open Source Development

- Developing both pNFS client and server
- Design and development taking place in open community
 - <u>http://opensolaris.org/os/project/nfsv41/</u>
 - > Binaries as well as source code with design documentation
 - > Source code reviews on nfsv41-discuss@opensolaris.org
 - > Live updates new source and binaries visible within a day
- Early prototype available with instructions

Key Features

• File-based implementation in v1.0

- > Client uses the file interface for I/O with the data servers
- Management via Simple Policy Engine (SPE)
 - > Administrative interface on the server to specify policies
 - > Examples
 - >2-way striping for files from user A
 - >Assign files from user/group C to storage device D
 - > Similar interface for specifying policy "hints" on client

Key Features (contd.)

- pNFS over RDMA (on Infiniband)
 - > RDMA critical for HPC applications
 - > Targeted for initial delivery
 - > NFS over RDMA for v3 & v4 available now in opensolaris

Summary and Call to Action

- pNFS is the first open standard for parallel I/O across the network
- pNFS has wide industry support
 - commercial implementations and open source
- Start using NFSv4.0 today
 - Eases transition to pNFS

Urge your O/S (including Linux) distributor and storage vendor to include pNFS